黄河流域空气质量时空分布及影响因素分析

Spatial-temporal Distribution of Air Quality and Its Influencing Factors in the Yellow River Basin

摘要本文基于2015—2018年空气质量监测数据,研究了黄河流域空气质量的时空变化特征,量化分析了影响黄河 流域空气质量空间分布的主要因素。结果表明:(1)2015—2018年,黄河流域空气质量总体趋于改善,除O₃-8h外, $PM_{2.5}$ 、 PM_{10} 等污染物浓度均不同程度下降;(2)空气质量不达标天数未有明显减少,以 O_3 -8h为首要污染物的持续时 间明显延长,并且污染天数与 $PM_{2.5}$ 的差距逐渐缩小;(3) $PM_{2.5}$ 、 PM_{10} 浓度呈现东高西低的分布格局, O_3 -8h污染区 域逐渐扩大并呈持续连片分布,热点城市主要分布在流域下游,冷点城市主要分布在流域上游;(4)平均气温、平均风速、 人口密度和城镇居民人均可支配收入是影响 $PM_{2.5}$ 空间分布的主要因素;地形起伏度、降水量、平均气压和人口密度是影 响PM₁0空间分布的主要因素,累积解释率为65.9%;平均气压、地形起伏度、日照时间和平均风速是影响O。-8h空间 分布的主要因素。

关键词 黄河流域:空气质量:时空分布:影响因素

■文/王敏 冯相昭 杜晓林 赵梦雪 梁启迪

DOI:10.14026/j.cnki.0253-9705.2019.24.012

黄河流域生态保护和高质量发展 已上升为重大国家战略。习近平总书 记明确要求黄河流域各省(区)要共 同抓好大保护、协同推进大治理,着 力促进全流域高质量发展。黄河流域 是我国北方重要的人口密集区和产业 承载区, 高密度人口的布局和高强度 的开发建设使流域内大气污染问题日 益突出。加快大气污染治理, 切实改 善环境空气质量,对于推动黄河流域 实现高质量发展至关重要。

目前,国内外学者从不同角度对 黄河流域范围内空气质量时空变化做 过广泛研究。有学者针对甘肃省[1]、 陕西省[2]、固原市[3]、郑州市[4]、新 乡市[5]等省(市),以及京津冀及周 边区域[6]、京津冀城市群[7-8]、华北 地区[9]、陕甘宁地区[10]、中原城市 群[11]等区域,研究PM2.5等主要污染物 和AQI的时空差异,其中部分研究还 分析了空气质量分布的影响因素。此 外,还有学者针对春节期间[12]、秸秆 焚烧关键期[13]、重污染过程[14]等特 定时段, 对空气质量分布特征进行了

分析。

但是,以上研究对象大多停留 在局地, 主要是针对某一特定污染物 或AQI,影响因素也多局限于气象条 件,且研究方法较为单一。本文从整 个流域的角度出发,基于2015-2018 年的空气质量监测数据,借助空间 自相关、冷热点分析、空间计量、冗 余分析等方法,研究黄河流域AQI及 PM_{2.5}、PM₁₀、0₃-8h等污染物的时空变 化特征, 并从地形、气象、社会、经 济4个方面选取影响因素指标,量化 分析影响黄河流域空气质量空间分布 的主要因素及其解释率,为同步推 进、整改治理、全局改善黄河流域 环境空气质量提供科学支撑和决策 参考。

数据来源与方法

本文采用的空气质量数据全部 来源于生态环境部综合业务门户网站 (http://10.100.249.24/),研究 时段为2015年1月1日至2018年12月 31日。该门户网站上发布的监测城市 中,属于黄河流域周边城市范围的共 有69个,不含青海省及内蒙古自治区 阿拉善盟。因此,本文实际评价城市 为69个,AQI评价标准参考《环境空 气质量评价技术规范(试行)》(HJ 663-2013) .

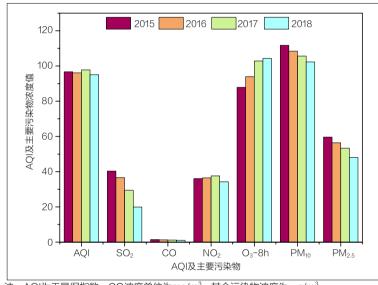
本文从气象、地形、社会、经 济4个方面选取影响因子。气象因子 包括平均气温、降水量、平均风速、 日照时数、平均相对湿度、平均气 压、平均水汽压。数据来源于中国气 象数据网(http://www.nmic.cn) 发 布的中国地面气候资料月值数据集, 站点范围包括黄河流域及周边的230 个气象站点,采用ANUSPLINE软件进 行空间插值, 先生成栅格数据, 再用 ArcGIS 10.5提取得到气象因子。地 形因子选用地形起伏度,基于寒区旱 区科学数据中心(http://westdc. westgis.ac.cn) 提供的数字高程模 型(DEM)计算得到。社会和经济因 子包括人均GDP、人口密度、城镇居 民人均可支配收入、农村居民人均可 支配收入,数据来源于WIND数据库和

各城市2018年国民经济和社会发展统 计公报。

基于以上数据,对2015—2018 年黄河流域空气质量变化进行时间序 列分析,并基于ArcGIS 10.0采用空 间自相关分析和冷热点分析方法,测 度流域2018年主要污染物浓度的空间 自相关性及冷热点分布情况。同时, 考虑到空间计量模型可以有效解决线 性回归分析无法处理的空间依赖性问 题,冗余分析(Redundancy Analysis,RDA)能够将多变量直接进行梯 度分析,分别基于GeoDa软件和CANO-C0 5.0软件,通过空间计量分析和冗 余分析,对影响流域2018年主要污染 物浓度空间分布的主要因素及其解释 率进行量化分析。

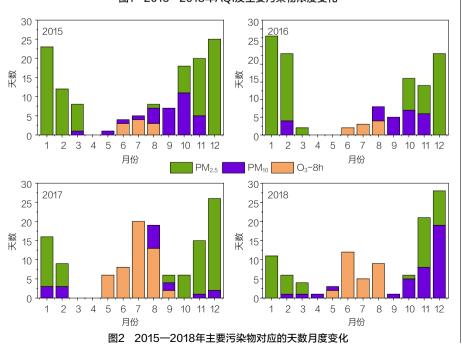
结果分析

时间变化特征


污染物浓度年际变化。2015-2018年,黄河流域空气质量总体趋 于改善。如图1所示,年均AQI由97 下降至95, PM_{2.5}、PM₁₀、SO₂、CO浓度 均保持逐年下降水平。其中,SO₂下 降幅度最大, 年均浓度由43 μg/m³ 下降至21 µ g/m³, 降幅达51%; 其 次是CO和PM₂₅,年均浓度分别由 1. 4mg/m³和60 μg/m³下降至1. 0mg/m³ 和48 μg/m³; PM₁₀由112 μg/m³下降 至102 µg/m³,降幅相对较小。另 外, 0₃-8h浓度整体上升趋势明显, 由88 µ g/m³增至104 µ g/m³,增幅达 19%; NO₂在2015—2017年保持上升趋 势,但在2018年降至近4年以来的最 低水平 (34 µ g/m³)。

不达标天数月度变化。影响黄河流域周边城市空气质量达标的主要污染物是PM_{2.5}、PM₁₀和0₃-8h。如图2 所示,2015—2018年,空气质量不达标天数没有明显减少,但首要污染物 天数格局发生了变化,2015年主要污染物是PM_{2.5}和PM₁₀,2017年起发展为PM_{2.5}和0₃-8h并重。其中,以PM_{2.5}为首要污染物的污染天气主要发生在每年的11月至次年3月,且污染天数下降趋势明显,所占比例已由2015年的69%下降至2018年的39%,且各月以PM_{2.5}为首要污染物的污染天数呈总体下滑态势。以PM₁₀为首要污染物的污染天数

2015—2017年稳步下降,但2018年出现了反弹,较同期增长1倍之多。另外,随着PM_{2.5}、PM₁₀浓度下降以及0₃-8h浓度上升,以0₃-8h为首要污染物的污染天气持续时间明显延长,并且污染天数与PM_{2.5}的差距逐渐缩小。


空间分布特征

空间格局变化。2015-2018年, 黄河流域 $PM_{2.5}$ 、 PM_{10} 和 0_3 -8h浓度整体 呈现东高西低的空间分布格局(见

注:AQI为无量纲指数,CO浓度单位为mg/m³,其余污染物浓度为 μ g/m³。

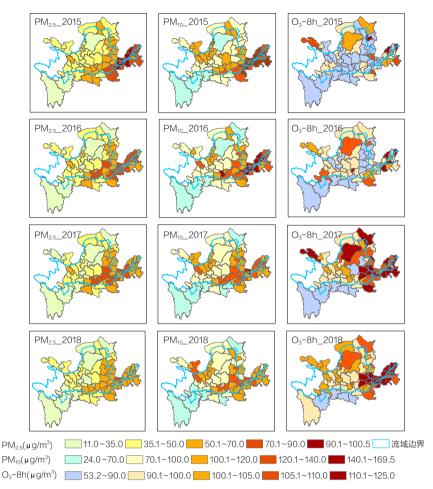
图1 2015—2018年AQI及主要污染物浓度变化

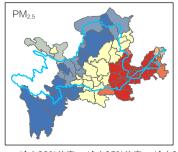
58

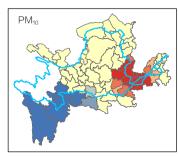
图3)。其中,PM25污染明显改善, 流域上游年均浓度小于35 μg/m³即达 到国家二级标准的城市数量增多,污 染严重区域主要位于流域中下游的 山西、河南、山东及陕西南部, 但这 些区域的PM。浓度下降明显,2018年 基本控制在70μg/m³以内; PM10污染 情况总体有所改善,流域中下游高污 染城市的PM10浓度下降到134μg/m³以 内, 但个别城市如兰州、武威、呼和 浩特等出现了反弹现象; 03-8h污染整 体趋重, 且污染区域逐渐呈持续连片 分布, 其中, 流域东部特别是河南和 山东省内城市污染最重, 鄂尔多斯、 乌兰察布、榆林等北部城市次之,西 部城市03-8h污染虽有加重趋势,但整 体污染程度低于东部和北部。

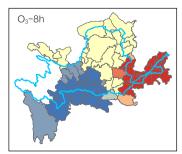
空间集聚特征。对2015—2018年 黄河流域的PM25、PM10和03-8h浓度进 行全局Moran's I分析,结果如表1 所示。2015—2018年,上述三种污染 物浓度的全局Moran's I均大于0, 并且通过了0.001的显著性检验,表 明黄河流域空气质量具有显著的正的 空间自相关性,整个空间分布大体呈 现出高一高集聚或低一低集聚模式。 另外,PM_{2.5}和O₃-8h的Moran's I分别 保持逐年降低和升高水平, 说明流域 内PM2.5和03-8h年均浓度的空间自相关 程度分别呈减弱和增强态势。

以2018年为例,进一步识别 PM_{2.5}、PM₁₀和0₃-8h浓度聚集的位置




图3 2015—2018年黄河流域PM_{2.5}、PM₁₀、O₃-8h浓度空间变化


(见图4)。结果发现,2018年,黄 河流域PM_{2.5}、PM₁₀和0₃-8h的冷、热点 分布特征大体相同, 均呈东热西冷的 格局。其中, PM25和03-8h的热点城市 主要分布在山东、河南、山西, 进一 步证实这些区域已形成PM2.5和03-8h 复合型污染的高发地带;冷点城市主 要分布在四川、甘肃、内蒙古等地。


PM10的热点和冷点城市相对较少,热 点城市主要分布在河南和山西, 冷点 城市主要分布在四川。

影响因素分析

空间计量分析。考虑到流域 PM_{2.5}、PM₁₀、0₃-8h浓度均表现出显著 的空间自相关性, 若单纯采用普通

■冷点99%信度 ■冷点95%信度 ■冷点90%信度 □ 无特征点 ■ 热点 90%信度 ■ 热点 95%信度 ■ 热点 99%信度 □ 流域边界

图4 2018年黄河流域PM_{2.5}、PM₁₀、O₃-8h浓度冷热点空间分布

最小二乘法(OLS)模型进行估计,可能会不符合线性回归模型的基本假设,导致结果产生偏误。谨慎起见,本文在进行OLS模型估计的基础上,同时采用空间滞后模型(SLM)和空间误差模型(SEM)对非独立性样本数据进行回归估计,结果如表2

所示。

对比Log likelihood和R²,可以 发现SLM模型和SEM模型的拟合效果均 好于OLS模型,且赤池信息准则AIC 值也有所降低,有理由认为SLM模型 和SEM模型的估计结论更为可靠。同 时,对比LM(lag)和LM(error),以 及Robust LM(1ag)和Robust LM(error),发现SLM模型拟合结果更显著,即更适用于本文。

SLM模型拟合结果显示,人口密度、平均气温对PM_{2.5}存在正向的显著影响,平均风速、日照时数、地形起伏度对0₃-8h产生正向显著影响,人口

表1 2015—2018年黄河流域PM_{2.5}、PM₁₀和O₃-8h全局Moran's |

	污染物	2015年	2016年	2017年	2018年
DM	Moran's I	0.66	0.64	0.58	0.56
PM _{2.5}	P值	0.00	0.00	0.00	0.00
PM ₁₀	Moran's I	0.49	0.47	0.40	0.33
	P值	0.00	0.00	0.00	0.00
O ₃ -8h	Moran's I	0.18	0.23	0.30	0.33
	P值	0.00	0.00	0.00	0.00

表2 OLS、SLM与SEM的拟合结果比较

4E 0E0(0EM) 30EM(3)/CLIJA/DIA										
变量	PM _{2.5}			PM ₁₀			O ₃ -8h			
	OLS	SLM	SEM	OLS	SLM	SEM	OLS	SLM	SEM	
人口密度	0.02***	0.02**	0.02***	0.03***	0.03***	0.03***	_	_	_	
平均风速	10.46**	_	9.02*	_	_	_	11.00**	7.95**	7.50*	
平均气温	4.02**	3.41**	3.51**	_	_	_	2.84*	_	_	
日照时数	_	_	_	_	_	_	0.29***	0.18**	0.21**	
平均气压	_	_	_	-1.07*	_	_	_	_	_	
地形起伏度	_	_	_	-0.11**	-0.08*	-0.10**	0.05*	0.03*	0.04*	
LM(lag)		2.85*			2.85*			9.71***		
Robust LM(lag)		6.16**			4.92**			5.56***		
LM(error)			0.50			0.71			4.68*	
Robust LM(error)			3.81*			2.77*			3.53*	
R^2	0.75	0.77	0.76	0.68	0.70	0.69	0.64	0.70	0.69	
Log likelihood	-228.27	-226.83	-227.89	-268.19	-266.67	-267.65	-220.06	-215.33	-216.33	
AIC	482.54	481.67	481.78	562.38	561.33	561.29	466.13	458.93	458.66	

注: ***、**和*分别表示达到0.01、0.05和0.1的显著性水平。

表3 通过Monte Carlo置换检验的影响因子及其解释率

影响因子	PM _{2.5}			PM ₁₀			O ₃ -8h		
	解释率/%	F	Р	解释率/%	F	Р	解释率/%	F	Р
平均气温	60.2	101	0.002	_	_	_	_	_	_
平均风速	4.9	9.3	0.004	_	-		_	_	_
平均气压	_	_	1	6.6	12.4	0.004	41.6	47.8	0.002
日照时间	_	_	1	_	1		8.7	11.6	0.004
降水量	_	_	1	17.0	25.1	0.002	_	_	_
地形起伏度	_	_		41.2	55.7	0.002	7.6	11.8	0.004
人口密度	3.3	6.7	0.014	4.2	12.4	0.004	_	_	_
城镇居民人均可支配 收入	2.5	5.5	0.016	_	_	_	_	_	_
累积贡献率/%	70.8			65.9			58.0		

密度和地形起伏度则分别会对 PM_{10} 产生正向和负向显著影响,人均GDP、降水量等其他6个因子对 $PM_{2.5}$ 、 PM_{10} 和 0_3 -8h浓度空间差异未表现出显著影响。

RDA排序分析。进一步采用RDA 排序分析方法,量化影响因子对流 域PM2 5、PM10和03-8h浓度空间差异的 解释率,并通过Monte Carlo检验得 到影响因子的重要性排序,结果如表 3所示。平均气温、平均风速、人口 密度和城镇居民人均可支配收入是 影响PM。差异的主要因素,解释率分 别为60.2%、4.9%、3.3%和2.5%,累 积解释率为70.8%; 地形起伏度、降 水量、平均气压和人口密度是影响 PM₁₀差异的主要因素,解释率分别为 41.2%、17.0%、6.6%和4.2%,累积解 释率为65.9%;平均气压、日照时间 和地形起伏度是影响03-8h差异的主要 因素,解释率分别为41.6%、8.7%、 7.6%, 累积解释率为58.0%。

结论与讨论

结论

- (1) 2015—2018年,黄河流域 空气质量总体趋于改善,年均AQI由 97下降至95, $PM_{2.5}$ 、 PM_{10} 、 SO_2 、CO浓度均有不同程度的下降。 $但O_3$ -8h浓度 整体上升趋势明显,由88 μ g/m³增至 104μ g/m³,增幅达19%。
- (2) 空气质量不达标天数未有明显减少,但首要污染物天数格局发生了变化。以0₃-8h为首要污染物的持续时间明显延长,并且污染天数与PM_{2.5}的差距逐渐缩小,0₃-8h从2017年起成为黄河流域继PM_{2.5}后又一重要污染物。
- (3) 黄河流域PM_{2.5}、PM₁₀污染整体改善明显,呈现东高西低的分布格局。0₄-8h污染趋重且污染区域逐渐扩

大并呈持续连片分布。上述污染物均 具有显著的空间自相关性,大体呈现 出高一高集聚或低一低集聚模式,热 点城市主要分布在流域下游的山西、 河南及山东省内,冷点城市主要分布 在流域上游。

- (4) SLM模型适用于本文用于 回归估计。拟合结果显示,人口密 度、平均气温对PM_{2.5}浓度存在正向的 显著影响,平均风速、日照时数、地 形起伏度对0₃-8h浓度产生正向显著 影响,人口密度和地形起伏度也分别 会对PM₁₀浓度产生正向和负向的显著 影响。
- (5) RDA排序结果显示,平均气温、平均风速、人口密度和城镇居民人均可支配收入对PM_{2.5}空间分布的累积解释率为70.8%,地形起伏度、降水量、平均气压和人口密度对PM₁₀空间分布的累积解释率为65.9%,平均气压、地形起伏度和日照时间对0₃-8h空间分布的累积解释率为58.0%。

讨论

- (1)近年来,黄河流域中下游城市PM_{2.5}、PM₁₀、SO₂、CO等污染物浓度的整体下降主要得益于在京津冀及周边地区、汾渭平原开展的大气污染防治攻坚战。2015年以来,流域中下游城市围绕"减煤、抑尘、治企、控车",制定出台了一系列环保政策措施和方案,在大气污染防治工作方面取得了重要进展。相比之下,流域上游城市由于空气质量底数情况好,大气污染防治工作力度小,上述污染物浓度下降幅度要小于中下游城市。但是,0₃-8h浓度持续攀升且污染区域扩大,在一定程度上说明现阶段0₃污染防治工作的基础支撑还显薄弱。
- (2) 黄河流域空气质量受自然 外因和人为内因共同影响,高污染物 排放是流域空气质量空间差异的根本

- 内因,平均气温、平均风速、日照时数、地形等自然条件是空气质量集聚与扩散的外在因素。本文的定量分析结果显示,人口密度对PM_{2.5}和PM₁₀浓度的影响具有显著性,但对0₃-8h无显著影响,说明PM_{2.5}和PM₁₀浓度受人为活动影响的程度较0₃-8h更大,0₃-8h浓度更易受日照时数、地形起伏度等自然外因影响。因此,现阶段整个流域的大气污染防治重点还是PM_{2.5}和PM₁₀,但流域下游区域也要同步开展0₃-8h污染防治工作。
- (3) SLM模型拟合结果显示,降水量、平均相对湿度等因素对PM_{2.5}、PM₁₀和0₃-8h浓度未表现出显著影响,与部分学者的研究结论^[15-16]有所不同。这可能与时间尺度或空间尺度大小有关。在不同时间尺度(日、月、年)和不同空间尺度(城市、区域、流域)下,大气湿度、降水、风速、地形等因素对大气污染的影响机理不同^[17-18]。在比较和分析影响因素时要区分时空的尺度效应。
- (4) 本文筛选出来的12个影响 因子间存在较强的相关性,通过冗余 分析可有效降低特征维数,减少冗 余信息所造成的误差,提高模型模 拟精度。但是,对比SLM模型与冗余 分析拟合结果,发现通过显著性检验 的影响因子不一致。如用冗余分析得 出的影响PM。。的显著性因素包括平均 气温、平均风速、人口密度和城镇居 民人均可支配收入,但是在SLM模型 拟合结果中只有平均气温和人口密度 通过了显著性检验; 又如平均风速对 PM10的影响在SLM模型拟合结果中是显 著的,但是未通过冗余分析里的Monte Carlo检验。究竟哪一种方法的模 拟结果更为可靠,目前还难以判别, 在后续的研究对比分析中,还需结合 多种模型模拟方法进行相互佐证以及

交叉使用分析。 即

参考文献

- [1] 毋建军. 2018年甘肃省城市空气质量状况研究[J]. 环境研究与监测, 2019, 32(3): 7-11.
- [2] 杨飞, 易文利, 朱婵园, 等. 陕西省空 气质量时空差异研究[J]. 四川环境, 2018, 37(2): 78-85.
- [3]杨文海, 韩世昌, 马兴明. 固原市空气 质量特征及其与气象条件的关系[J]. 甘肃农业, 2019(9): 69-73.
- [4]李治军, 卢松, 陈末, 等. 郑州市大气 污染时空分布特征分析及预测模型建立 [J]. 黑龙江大学自然科学学报, 2019, 36(4): 450-458.
- [5]沙涛, 张慧. 新乡市环境质量灰色关联 分析[J]. 环境科学导刊, 2019, 38(5): 85-88.
- [6] 陈辉, 厉青, 李营, 等. 京津冀及周 边地区PM_{2.5}时空变化特征遥感监测分析 [J]. 环境科学, 2019, 40(1): 33-43.
- [7]程雪雁, 朱磊, 周艺萱. 2015—2018 年京津冀城市群空气污染时空变化特 征[J]. 北京师范大学学报(自然科学 版), 2019, 55(4): 523-531.
- [8]刘海猛,方创琳,黄解军,等.京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报,2018,73(1):177-191.
- [9]林美含. 华北地区空气质量时空变化特

- 征及其影响因素探究[C]// 中国地理学会经济地理专业委员会. 2019年中国地理学会经济地理专业委员会学术年会摘要集. 2019: 136.
- [10] 刘昕, 辛存林. 陕甘宁地区城市 空气质量特征及影响因素分析[J/0L]. 环境科学研究: 1-16[2019-10-31]. https://doi.org/10.13198/j.issn.1001-6929.2019.05.16.
- [11]邢莉, 苏喜军. 中原城市群空气质量指数时空分布特征[J]. 华北水利水电大学学报(社会科学版), 2017, 33(6): 38-44
- [12]解淑艳, 王胜杰, 刀谞, 等. 2018年春节期间京津冀及周边区域空气质量分析[J/0L]. 中国环境监测: 1-11[2019-10-31]. https://doi.org/10.19316/j.issn.1002-6002.2019.05.01.
- [13]吴文玉, 张浩, 何彬方, 等. 淮河流域秸秆焚烧关键期主要大气污染物浓度时空分布特征[J]. 气象与环境学报, 2019, 35(4): 33-39.
- [14]朱媛媛, 高愈霄, 柴文轩, 等. 京津 冀及周边区域PM_{2.5}叠加沙尘重污染过程 特征及预报效果分析[J/0L]. 环境科 学: 1-18[2019-10-31]. https://doi. org/10.13227/j.hjkx.201908123.
- [15] 张淑平, 韩立建, 周伟奇, 等. 冬季 PM_{2.5}的气象影响因素解析[J]. 生态学报, 2016, 36(24): 7897-7907.
- [16]LIU H, MA W, QIAN J, et al. Effect

- of urbanization on the urban meteorology and air pollution in Hangzhou[J]. Journal of Meteorological Research, 2015, 29(6): 950-965.
- [17]HESTER R E, HARRISON R M. Air quality in urban environments[M]. London: Royal Society of Chemistry, 2009.
- [18] WHITEMAN C D, HOCH S W, HOREL J D, et al. Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley[J]. Atmospheric Environment, 2014(94): 742-753.

(作者单位:生态环境部环境与经济政策研究中心。冯相昭系本文通讯作者)

关于换发新版记者证人员名单的公示

根据《国家新闻出版署关于2019年全国统一换发新闻记者证的通知》(国新出发[2019]39号)、《新闻记者证管理办法》要求,我社已对换发记者证人员资格进行严格审核,现将名单予以公示,接受社会监督。

公示期2019年12月20日—12月30日。

拟换发新闻记者证人员:罗敏,旧版新闻记者证K11170055000002已收回,并作废。

监督举报电话

国家新闻出版署电话: 010-83138953 《环境保护》杂志社电话: 010-67113764

> 《环境保护》杂志社 2019年12月20日